SYNTHESIS OF DESTOMYCIN C, A PSEUDO-TRISACCHARIDE ANTIBIOTIC HAVING AN INTERGLYCOSIDIC SPIRO-ORTHOESTER LINKAGE

Juji YOSHIMURA, Shigeomi HORITO, Jun-ichi TAMURA, and Hironobu HASHIMOTO*

Laboratory of Chemistry for Natural Products, Faculty of Science,

Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227

Destomycin C, a pseudo-trisaccharide antibiotic of orthosomycin family was synthesized via spiro-orthoester formation between 5-0-(β -D-mannopyranosyl)-2-deoxystreptamine and 6-amino-6-deoxyheptonolactone derivatives.

Interglycosidic spiro-orthoester linkage is the structural characteristics of so-called orthosomycins $^{1)}$ and for its construction three synthetic methods have been developed independently. $^{2-4)}$ In this paper we would like to report the first synthesis of a pseudo-trisaccharide antibiotic destomycin C $(\underline{1})$, $^{5)}$ using D-mannose as a starting compound for the talopyranose moiety which was linked with 6-amino-6-deoxy-L-glycero-D-galacto-heptonic acid (destomic acid) and N,N'-dimethyl-2-deoxystreptamine through spiro-orthoester and β -glycosidic linkages, respectively.

Methyl 6-o-trityl- α -D-mannopyranoside (2)⁶⁾ was treated with sodium hydride and allyl chloride in N,N-dimethylformamide (DMF) to give 2,3,4-tri-o-allyl derivative (3) in 86% yield. Treatment of 3 with 80% aqueous acetic acid at 60°C gave de-o-tritylated derivative (4) in 92% yield, and its conversion into 6-o-benzyl derivative (5) was performed with sodium hydride and benzyl chloride in DMF in 67% yield. Acetolysis of 5 with acetic anhydride and acetic acid containing

1336 Chemistry Letters, 1985

concentrated sulfuric acid at room temperature gave the desired 1-acetate $(\underline{6})^{7}$) and 1,6-diacetate $(\underline{7})$ in 67% and 30% yields, respectively. Treatment of $\underline{6}$ with hydrogen chloride in ether at 0 °C gave the corresponding α -chloride (8) in 74%

TMS=trimethylsily, Tr=trityl.

yield.

Glycosylation of N,N-dibenzyloxycarbonyl-2-deoxystreptamine $(\underline{9})^{8}$ with $\underline{8}$ in tetrahydrofuran in the presence of silver triflate at -90 °C afforded the desired β -disaccharide $(\underline{10})^{9}$) together with the corresponding α -disaccharide 10) in 40% and 22% yields, respectively. Conversion of $\underline{10}$ into cyclic carbamate by intramolecular ester exchange using sodium hydride in DMF¹¹) at 0 °C, followed by methylation with methyl iodide gave $\underline{11}$ in 74% yield. De-o-allylation of $\underline{11}$ with palladium-charcoal and p-toluenesulfonic acid in methanol and successive trimethylsilylation gave $\underline{12}$ in 95% yield in two steps. On the other hand, destomic acid moiety was derived from destomycin A. The previously reported 120 tri-N-ethoxycarbonyl derivative was converted into octa-o-(p-methylbenzyl) derivative by treatment with p-methylbenzyl

Chemistry Letters, 1985

bromide and silver oxide in DMF in 50% yield, and then hydrolyzed with 1 mol· dm^{-3} hydrochloric acid-acetic acid to give 13^{13}) in 67% yield.

According to the method of orthoester formation established by o previous work, 2) destomic acid derivative (13) was coupled with 12 i ether 14) in the presence of trimethylsilyl triflate at 3 °C for 3 d to give a single pseudotrisaccharide (14) regio- and stereoselectively. Inversion of the configuration at C-4' was performed b oxidation of de-o-trimethylsilylated derivative (15) and successive reduction to give 16 in 36% yield in two steps. Then, the dicarbamate wer hydrolyzed with aqueous barium hydroxide at 80 °C, and p-methylbenzy and benzyl groups were hydrogenolyzed water in the presence of palladium hydroxide. The deprotected product 15 was purified on a column of anion

Table 1. $^{1}{\rm H~NMR~data~of~natural~destomycin~C}$ in ${\rm D_{2}O~at~500~MHz}$

	Proton	Chemical shift (ppm)	Coupling constant (Hz)
our	1,6	2.74-2.87 m	^J 1,2a ^{=J} 2a,3 =12.3
in	2a 2e	1.22 q 2.49 dt	^J 1,2e ^{=J} 2e,3 =3.7
	4 6 5	3.61 dd 3.64 dd 3.84 t	J _{2a,2e} =12.3 J _{3,4} 10.4 J _{6,1} 10.2 J _{4,5} =J _{5,6} =9.2
by	1' 2' 3' 4' 5'	5.38 d 4.76 dd 4.86 t 4.12 dd 3.73 ddd	J _{1',2'} =2.3 J _{2',3'} =5.9 J _{3',4'} =5.9 J _{4',5'} =1.3 J _{5',6'a} =3.6
re	6'a 6'b 2" 3"	3.91 dd 4.03 dd 4.24 d 4.05 dd	J6'a,6'b=11.8 J5',6'b=8.2 J2",3"=10.2 J3",4"=3.4
y1	4" 5"	4.17 dd 3.89 dd	J _{4",5"} =1.3 J _{5",6"} =8.4
d in	6" 7"a	3.35 ddd 3.69 dd	J _{6",7"a} =6.4
5)	7 a 7"b N-Me	3.86 dd 2.56 s,2.58 s	^J 7"a,7"b ⁼ 11.6 ^J 6",7"b ^{=4.3}

exchange resin [Dowex 1x2 (OH⁻)], and proved to be identical with natural destomycin C ($\underline{1}$) by comparison of their ¹H-NMR spectra at 500 MHz. The spectrum of $\underline{1}$ was fully analyzed at the first time in the aid of 2D J-resolved spectra and the data are summarized in the Table. The coupling constants indicate the slightly distorted ${}_{0}$ H⁻⁵ conformation of the talopyranose moiety instead of the B_{1,4} conformation, which was proved by X-ray analysis in the case of octa-o-acetyl-tris(N-ethoxycarbonyl)destomycin A. ¹²⁾

We are indebted to Meiji Seika Co. Ltd. for the kind gift of destomycins.

References

1) W. D. Ollis, C. Smith, and D. E. Wright, Tetrahedron, 35, 105 (1979).

1338 Chemistry Letters, 1985

J. Yoshimura, S. Horito, and H. Hashimoto, Chem. Lett., 1981, 375; S. Horito,
 K. Asano, K. Umemura, H. Hashimoto, and J. Yoshimura, Carbohydr. Res., 121, 175
 (1983); J. Yoshimura, K. Asano, K. Umemura, S. Horito, and H. Hashimoto,
 Carbohydr. Res., 121, 187 (1983).

- 3) J.-P. Praly and G. Descotes, Tetrahedron Lett., 23, 849 (1982); J.-P. Praly, G. Descotes, M.-F. Grenier-Loustatet, and F. Metras, Carbohydr. Res., 128, 21 (1984).
- 4) G. Jaurand, J.-M. Beau, and P. Sinaÿ, J. Chem. Soc., Chem. Commun., 1982, 701.
- 5) M. Shimura, Y. Sekizawa, K. Inuma, H. Naganawa, and S. Kondo, J. Antibiotics., 28, 83 (1975).
- 6) S. J. Sondheimer, R. Eby, and C. Shuerch, Carbohydr. Res., <u>60</u>, 187 (1978).
- 7) $\left[\alpha\right]_{D}^{24}$ +41.6° (c 1.5, CHCl₃); ¹H NMR (CDCl₃): δ 6.17 (d, J_{1,2} 1.8 Hz, H-1) and 2.09 (s, 3 H, OAc).
- 8) Prepared by treatment of 2-deoxystreptamine dihydrochloride with benzyloxycarbonyl chloride and sodium carbonate in water. Mp 254-260 °C; IR (KBr): 1690 and 1540 cm⁻¹. cf., S. Umezawa and Y. Ito, Bull. Chem. Soc. Jpn., 34, 1540 (1961).
- 9) Separated on a silica-gel column with hexane-ethyl acetate (1:1). $\underline{10}$: Mp 216-217 °C, $[\alpha]_D^{24}$ -5.8° (c 1.0, CHCl₃), 13 C NMR (CDCl₃): δ 102.0 (d, C-1', J_{CH} 158.4 Hz).
- 10) Mp 128-129 °C, $\left[\alpha\right]_{D}^{24}$ +20.6° (c 2.2, CHCl₃); ¹³C NMR (CDCl₃): δ 99.96 (C-1').
- 11) S. Umezawa, T. Tsuchiya, and Y. Takagi, Bull. Chem. Soc. Jpn., 43, 1602 (1970).
- 12) S. Horito, Y. Ohashi, N. Gassner, J. Yoshimura, and Y. Sasada, Bull. Chem. Soc. Jpn., <u>54</u>, 2147 (1981).
- 13) $\left[\alpha\right]_{D}^{23}$ +70.9° (c 1.6, CHCl₃); ¹H NMR (CDCl₃): δ 4.47 (d, $J_{2,3}$ 9.4 Hz, H-2), ¹³C NMR (CDCl₃): δ 170.0 (C-1).
- 14) Anomerization of the glycosidic bond of cyclohexyl 6-o-benzyl-2,3,4-tris-o-trimethylsilyl-β-D-mannopyranoside was observed on a preparatory glycosylidenation with 2,3,4,6-tetra-o-benzyl-D-gluconolactone in the presence of trimethylsilyl triflate. The anomerization occurred completely in dichloromethane and could be suppressed in ether under 20%.
- 15) Yield was about 40% in two steps.

(Received July 11, 1985)